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Step 9. This is the thermal hydrolysis equilibrium 
spoken of earlier and in argument 5. The amount of 
impurity H2O in the solvent acetic acid and not the 
product HoO from step 7 is the critical factor in de­
termining the importance of this reaction. 

In summary, we believe that the general photochem­
ical mechanism by which Ce(IV) nitrate efficiently 
decarboxylates glacial acetic acid without utilizing 
intermediate NO3 radicals is clearly established. 
In so doing the concept of ligand sensitization was 
defined and its usefulness demonstrated whenever a 
ligand actively participates in an elementary step. In 
the second paper of this series, we shall prove that the 
concept is not limited to photoinitiated oxidation-
reduction reactions as seen in this study, but can be 

The rate of disappearance of birefringence of a 
solution of a polymer in the Kerr cell following 

sudden removal of the orienting electric field is de­
termined by the rotational diffusion properties of the 
polymer. If the particular polymer can be represented 
in a satisfactory fashion by a model structure for which 
theory is available relating the optical and diffusion 
behavior of the model to the parameters specifying its 
shape, then the values of these parameters corresponding 
to the polymer can be estimated from birefringence 
data. The simplicity of the model depends on two 
initial decisions. First, it is necessary to determine 
whether the molecule behaves in orientation and dif­
fusion as a rigid body or whether it is deformable. 
Second, one must specify a size range for the model, 
since this will determine the approximations made in the 
analysis of its optical and viscous properties. The 
present investigation is concerned with suspensions of 
rigid dielectric particles which are very small with re­
spect to the wavelength of light but of sufficient size to 
permit introduction of macroscopic quantities, like 
the capacitivity, in the analysis of their polarization and 
rotational diffusion. 

The elements of theory required to describe the 
variation in birefringence of a suspension following re­

applied to interpret the unexpected chemistry of spon­
taneous thermal oxidation-reduction processes as 
well. 

Acknowledgment. This work was financially sup­
ported in part by the Research Corporation, the Na­
tional Science Foundation (Grants G15330 and 
GP2671), the U. S. Atomic Energy Commission (Con­
tract AT-(40-l)-2825), and Vanderbilt University. 
We are also grateful to Mr. A. T. Sutton and Dr. 
A. D. Mclnturff for helping to design and build some 
of the apparatus and to Dr. R. E. Rummel for drawing 
Figure 1. (T. W. M.) is particularly indebted to his 
colleagues, Drs. T. M. Harris and D. L. Tuleen, for 
their critical and constructive evaluation of this work. 

moval of an orienting field are threefold: (1) a 
theory of Brownian motion applicable to the shape 
class of the model, which introduces the rate of dissi­
pation of energy or the time scale into the diffusion prob­
lem and which relates the macroscopic diffusion 
constants to the frictional constants of individual 
particles; (2) expressions for the frictional constants 
for the model, which introduce the dependence of the 
diffusion rate on the parameters specifying size and 
shape within the general shape class of the model; 
and (3) a theory for the birefringence of a suspension of 
particles of given orientation which relates the ob­
served quantity, the retardation, to the probability 
density function for orientation at a given point. 

The most general shape class for which all three 
elements of theory are available is that of the asym­
metric ellipsoid. (In the following, the terms sym­
metric and asymmetric ellipsoid are employed to 
designate the spheroid of rotation and the ellipsoid 
possessing three unequal axes, respectively.) The 
theory of Brownian motion of ellipsoids has been given 
by Perrin,1'2 who obtained the rotational diffusion 
equation for a suspension of such particles, its general 

(1) F. Perrin, / . Phys. Radium, [7] 5, 497 (1934). 
(2) F. Perrin, ibid., [7] 7, 1 (1936). 

Transient Electric Birefringence of Suspensions of 
Asymmetric Ellipsoids 

Don Ridgeway 

Contribution from the Department of Biophysics, Medical College of Virginia, 
Richmond, Virginia. Received June 25, 1965 

Abstract: The analysis of the time dependence of the birefringence transient in the Kerr cell following sudden 
removal of the field is extended to include most important cases of a suspension of a monodisperse polymer 
representable as a rigid ellipsoid. This requires removal of two restrictions made in previous theory: the assump­
tion of a spheroid, which excludes the ellipsoid having three unequal axes, and the condition that the applied field 
is everywhere normal to the axis of the Kerr cell, which neglects field end effects of importance particularly in small 
cells. Expressions are obtained for the birefringence of a suspension in a nonuniform field of arbitrary direction, 
the relaxation times for the decay in birefringence in the general case, the explicit dependence of the birefringence on 
the angle through which the axis of the distribution function for angular orientation of the polymer is rotated away 
from the normal to the cell axis in the case of the spheroid, and the correction for field nonuniformity in previous 
results for the case of the spheroid. 

Journal of the American Chemical Society j 88:6 / March 20, 1966 



1105 

solution in the case of the spheroid, and expressions for 
the time variations of several mean quantities which 
appear in the analysis of the behavior of the asym­
metric ellipsoid. A recent, independent analysis has 
been given by Favro.3 The expressions for the fric-
tional drag experienced in steady rotation about each 
of the axes of the asymmetric ellipsoid have been 
derived in terms of the axial lengths of the ellipsoid 
by Edwardes.4 Theories of Brownian motion relate 
the macroscopic constants of the diffusion equation to 
these expressions. The analysis of the static electric 
properties of the dielectric ellipsoid in a uniform field is a 
classical problem of potential theory employing ellipsoi­
dal harmonics and is given by Stratton.8 The theory of 
Peterlin and Stuart6 of the birefringence of ordered 
suspensions applies the results of the static case to the 
optical problem, thus treating the problem as one of the 
polarization of macroscopic dielectrics. Recently, 
Taylor and Cramer7 have rederived the Peterlin-
Stuart result as a problem of Rayleigh-Gans scattering, 
for which the underlying assumptions are better under­
stood. The results obtained in these theories suffice to 
calculate the birefringence of a suspension of asym­
metric ellipsoids following removal of an orienting 
field. 

Almost all recent studies of the birefringence transient 
of solutions of biological polymers (proteins and 
nucleic acids) in the Kerr cell have employed the care­
fully elaborated treatment of Benoit8 of the rotational 
diffusion equation for ellipsoids. Two of the assump­
tions made in this study form important restrictions to 
its application, however. The first is that the analysis is 
confined to the case of the spheroid possessing optical 
and electric as well as geometric symmetry about its 
axis of rotation. Thus, molecules requiring represen­
tation as asymmetric ellipsoids, those with permanent 
dipole moments of nonaxial orientation, and those with 
intrinsic biaxial birefringence, all three of which prob­
ably form important classes in protein structure, are 
excluded from treatment. Second, Benoit assumes that 
the applied electric field orienting the particles is per­
pendicular to the optic axis of the Kerr cell. This 
requires that the field lines of the orienting field be 
paralleled throughout the cell and that the field end 
effects at the edges of the Kerr-cell electrodes be ne­
glected. 

The fundamental nature of these assumptions in the 
analysis is shown by examination of their effects on the 
differential equation for diffusion. We let &, <j>, and 
\p be the Eulerian angles describing the orientation of 
the electric axes a\, a2, and a3 of the particle with re­
spect to a laboratory coordinate system, with # and <f> 
being the colatitude and azimuthal angles of, e.g., 
axis A3, and with \p describing the rotation of the el­
lipsoid about axis a3. The differential equation for 
rotational diffusion of ellipsoids, derived from the 
theory of Brownian motion given by Perrin2 in terms of 

(3) L. D. Favro, Phys. Rev., 119, 53 (1960). 
(4) D. Edwardes, Quart. J. Math., 26, 70 (1893). 
(5) J. A. Stratton, "Electromagnetic Theory," McGraw-Hill Book 

Co., Inc., New York, N. Y., 1941, Sections 3.27 and 3.29. 
(6) A. Peterlin and H. A. Stuart, "Doppelbrechung, insbesondere 

kiinstliche Doppelbrechung," in "Hand- und Jahrbuch der chemi-
schen Physik," Band 8/13, A. Eucken and K. L. Wolf, Ed., Akademische 
Verlagsgesellschaft, Leipzig, 1943. 

(7) E. W. Tavlor and W. Cramer, Biophys. J., 3, 127 (1963). 
(8) H. Benoit, Ann. Phys., [12] 6, 561 (1951). 

the Eulerian angles, is 
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where p = p(d,4>,yp,t) is the probability density function 
for orientation. The diffusion constants (R,- are 

(R, 
kT 
C1 

(2) 

where kT is the thermal energy, and C; is the frictional 
couple encountered by the particle in steady rotation at 
unit angular velocity about its /th axis. The first re­
striction made by Benoit, requiring rotational sym­
metry about one of the axes of the particle (e.g., 
axis a3), has two effects on the differential equation. 
First, since (R1 = (R2, the assumption simplifies the 
coefficients of the first two terms in (1) and eliminates 
the final bracketed term. The other effect is that, 
since all orientations about a3 are physically equivalent, 
no orientation mechanism can produce a distribution 
with a probability density function containing a 4> 
dependence. Taking this as an initial condition on the 
diffusion, one may eliminate those terms in eq 1 
containing differentiation with respect to \j/. The 
second restriction in the Benoit treatment is that p 
possess a symmetry axis normal to the direction of 
measurement of the birefringence, e.g., parallel to the 
fixed axis from which # is measured. This would be 
the case if the external field were uniform, assuming 
proper alignment of the Kerr cell. With this restric­
tion, p becomes independent of <j>, and those terms in 
(1) involving differentiation by 0 vanish. As a result 
of the two restrictions together, eq 1 becomes 

which may also be written 

dp 
dt = (R1V

2P 

(3) 

(4) 

if the Laplacian operator is specialized to include no </> 
or \p dependence. This is the equation, although ob­
tained in a different fashion, which is solved by Benoit. 
Evidently, if the two restrictions are to be removed, 
then one must return to the full diffusion equation (1). 

The present investigation extends the analysis of 
birefringence in the Kerr cell following removal of the 
orienting field to include most important cases of the 
rigid ellipsoid which do not fulfill the Benoit restric­
tions. We shall state the problem in its general form as 
follows. Consider a suspension of identical, rigid, 
anisotropic, nonabsorbing, dielectric, asymmetric el­
lipsoids, with permanent dipoles, uniformly distributed 
in a homogeneous, isotropic medium of infinite extent. 
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Figure 1. Orientation of electrodes relative to the axial system 
OXYZ: (A) propagation vector of light, (B) applied electric field 
strength, (C) electric vector of light. 

Let the axes of the capacitivity tensor of the material 
coincide with the geometric axes of the ellipsoids, but 
assume no restriction on the orientation of the perma­
nent dipole moment. Take the concentration of par­
ticles to be sufficiently dilute so that the field arising 
from the polarization of one particle by an applied 
electric field is negligible in the vicinity of all other 
particles; and let the particles be within the size range 
and possess the optical properties assumed for applica­
tion of Rayleigh-Gans scattering theory. Let an 
external field orienting the particles be applied which 
varies in general in direction, but assume that the field 
lines always lie in planes parallel to that defined by the 
predominant field direction in the Kerr cell and the 
direction along which the retardation is to be measured9 

(the YOZ plane in the coordinate system defined below; 
cf. Figure 1). It is desired to calculate the birefringence 
of the suspension as a function of time following sudden 
removal of the external field. 

The discussion is divided into four sections. In 
section I, an expression is obtained for the birefringence 
of an oriented suspension of the defined type in which 
the symmetry axis of orientation is not perpendicular to 
the direction of measurement of retardation. The 
final result is written in the form required for the 
second section in terms of the distribution function for 
orientation without evaluation of the distribution. 
In section II, the solution to the general problem is 
given, with attention being directed at the expressions 
for the relaxation times for the decay of birefringence. 
In section III, the dependence of the measured retarda­
tion is written explicitly in terms of the direction of the 
symmetry axis of the distribution function for a sus­
pension of spheroids. Finally, in section IV, the 
results of the third section are introduced into Benoit's 
study to permit evaluation of data on the relaxation of 
retardation for suspensions of spheroids in cases in which 
the orienting field is known to be nonuniform. 

I. Birefringence of Oriented Suspensions 

An effect of orientation of ellipsoidal particles in a 
suspension is to render the suspension birefringent. 
In a uniform external field, the birefringence must be 
constant and. by symmetry, uniaxial with the optic axis 

(9) In a Kerr cell, the electrodes are standardly rectangular, and the 
edges producing the disturbing end effects in the field are normal to the 
YOZ plane. Consequently, this assumption is sufficiently general to 
include the types of nonuniform fields usually encountered. 

parallel to the field strength. In a nonuniform field, 
any volume element small with respect to the variation 
in the field direction is subjected to an approximately 
uniform field, and the birefringence over the volume 
element is constant and uniaxial. Since previous 
studies of Kerr-cell birefringence have been confined to 
the uniform-field case, the wave normal has been taken 
perpendicular to the optic axis of the suspension. In 
extending the analysis to include the nonuniform field, 
it is therefore necessary to obtain an expression for the 
birefringence in cases in which the optic axis is tilted 
away from the perpendicular. This is the purpose of 
the present section. 

We shall first define some axial systems and the trans­
formations relating them which will facilitate our sub­
sequent description of the initial particle orientation 
and the effect of diffusion on the orientation. Let 
OXYZ (cf. Figure 1) be a set of rectangular coordinates 
fixed with respect to the Kerr cell, with OZ parallel to the 
predominant external field direction (perpendicular to 
the electrode faces), OY such that the light is propa­
gated parallel to O Y from negative values of Y, and with 
OX completing the right-handed system. To each 
particle, assign two sets of coordinates. Let one of 
them, OX'Y'Z', be fixed with respect to OXYZ, with its 
axes parallel to the geometric axes of the particle at the 
instant the field is removed. Let the other, OX"Y"Z", 
move with the particle, with its axes parallel to those of 
the particle at all times. Relating the three systems of 
coordinates for a particle, we define two transforma­
tions, with matrices A = (a#) and C = (aj), such 
that 

// = E cjkh" 
k 

U = !>«/// = E E < W / ' (5) 

(Throughout the following, sums are over the three 
axes, with the sum indices referring to the appropriate 
xth, yth, and zth axes, respectively.) The quantities 
/ / ' , / / , and /_,• are the direction cosines of any given 
vector fixed within the particle with the yth axes of the 
systems of coordinates OX"Y"Z", OX'Y'Z', and 
OXYZ, respectively. Evidently, the elements a^ 
are independent of time and describe the initi al dis­
tribution of particle orientations, whereas the Cy's are in 
general time dependent and describe the Brownian 
motion of the particles following removal of the field. 
Since in the absence of the field the motion of a particle 
is independent of its orientation (in the assumed dilute 
suspension), the elements of C are independent of A. 
The elements of A are obviously independent of C. 

The most concise derivation of the birefringence of a 
suspension is that of Taylor and Cramer7 employing a 
method described especially by van de Hulst..1" In 
applying this method, we shall restrict discussion 
largely to the immediate application here and refer to 
these sources for its justification and elaboration. 
We wish to calculate the effect of a layer of a dilute 
oriented suspension of very small particles of the 
assumed type, continuous at its two faces with semi-
infinite layers of suspending medium, upon light propa­
gated through it as seen at a point P far removed from 
the layer. In the Rayleigh-Gans approximation, 

(10) H. C. van de Hulst, "Light Scattering by Small Particles," John 
Wiley and Sons, Inc., New York, N. Y., 1957. 
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which is assumed to apply in the present case, the light 
at P is a superposition of the primary wave and of 
dipole radiation (scattering) arising from polarization 
of the individual particles by the primary wave. The 
expression for the total scattered amplitude represents 
the sum over all particles contributing to the scattered 
light at P. This summation, which will be replaced by 
an integration, is simplified by two factors. First, the 
amplitude of the scattered wave from a given particle 
depends on particle orientation relative to the primary 
beam because of the anisotropy of the particle, i.e., 
the dependence on direction of the particle polariz-
ability. It should be noted that an ellipsoidal particle 
is anisotropic as a result of its shape, even in the 
case that it consists of a material which is itself iso­
tropic. Second, if the suspension is only slightly 
turbid, as we assume in taking the concentration of 
particles to be dilute, then the only particles which 
contribute to the scattering intensity at a point P 
far from the layer are those contained in the small 
cylindrical volume about the layer normal through P. 
For these particles, one need consider only expressions 
for zero-angle scattering (parallel to the direction of 
propagation of the primary beam). In performing the 
integration over contributing particles, let dfi designate 
an infinitesimal range about the orientation O in some 
configuration space for the particles; dn(fi), the num­
ber of particles with orientation fi, O + dfi; and p(Q), 
the probability density function for particle orientation. 
If N is the number of particles per unit volume in the 
suspension and V the volume contributing to scattered 
light at P, then dn = NVp(V) dO; and if u/(Q) is the 
zero-angle scattering amplitude at P for light polarized 
parallel to i from a particle of orientation V., then the 
total scattered amplitude at P from all particles is 
fu/(Q) dn(Q) = NVSu/(Q)P(Q) dn = NV(U4'), where the 
integration extends over all possible orientations. The 
integral is thus simply proportional to the averaged 
expression for zero-angle scattering from a single par­
ticle. 

We shall describe polarized light in terms of two 
linearly polarized components of amplitudes uz and 
Ux with their electric vectors parallel and perpendicular, 
respectively, to the YOZ plane in the coordinate sys­
tem defined earlier. Let {/} be a column vector with 
elements uz and Ux, with {6} and {1} being associated 
with incident and scattered light, respectively. The 
average zero-angle scattering amplitude of radiation 
for a single particle may be written in the form 

where {0} characterizes the primary polarizing wave, 
k = 2irj\ is the wave number of the light in the sus­
pending medium, y the vertical distance from the layer 
to P, and r the distance from the scattering particle to 
P. The light-scattering problem is solved by calcula­
tion of the four elements of the scattering matrix S 
of the transformation defined by (6). 

In general, the particle dipole moment p induced by 
an external field E is 

P = eo2>.<E-e,-)e,- (7) 
i 

(the dimensions here and throughout are in the ration­
alized mks system; e0 is the capacitivity of free space), 

where e; is a unit vector parallel to the zth electric 
axis of the particle, and a, is the polarizability along that 
axis. For an alternating field, such as that associated 
with the light wave, a4 is dispersive. Since we are 
interested in scattered light in the direction OY only, 
we wish expressions for the transverse polarizations, 
px and pz. The component px of the induced dipole 
moment in the OX direction is 

Px = €0£xS«.<erex)a + e0£zI>;(e.-• e*)(er ez) (8) 
i i 

and the analogous expression for/?z is formed by mutual 
exchange of x and z. The scalar products in (8) are 
the direction cosines, which can be written in terms of 
the elements of matrices A and C in eq 5, one observing 
that the subscript of p4 is the same as that of /,• and 
that of a4 fixes 4 " to 8«. 

If pv
{t) is the magnitude of the dipole moment in 

the eth direction induced in a particle by the primary 
plane wave «0» 

uoi = e,(-<*'-kr) (9) 

polarized parallel to the rth direction, then the ampli­
tude U1/^ of the spherical wave radiated in directions 
normal to v by the dipole, at distances far from the 
dipole, is11 

hi „ (>') , , s Ih-Zn (») „-ik(r-y) 

Ml,w= * ^ e . < » < - * o « * £ ^ f _ Uu ( 10 ) 
4irei r 4wet ikr K ' 

where tt is the capacitivity for the frequency w of pure 
solvent. Substituting eq 8 into 10 and comparing 
with eq 6, one obtains12 after conversion of the direc­
tion cosines as indicated 

S11 = q (Edidla^Cj/)2) 

S22 = q(H°t,CEaijCjd2) 
' j 

Sn = S21 = 9(E«.<Eai;«3jC>,2 + 2YjHaHaZkCj4Ck4)) 
i 5 j>k 

(11) 

where q = i^jAirni2 (ej/e0 = n/-). The expressions 
indicate averages over particle orientations. 

We can show that the off-diagonal elements S12 

and S21 vanish in the mean. Since matrices A and 
C are independent, we may write (a^a^c^Ckt) = 
(O1Ja1J)(Cj4Ck4). The double sum in Si2 vanishes be­
cause (Cj4Ck4) = 0 if j ^ k, as discussed below. The 
averages of the squares of elements of C do not in 
general vanish. The quantities a^ and a3j are the 
direction cosines of they'th axis of the ellipsoid with the 
coordinates OX and OZ, respectively, at the instant the 
field is removed. Because of the rotational symmetry 
of the angular distribution of particles about the orient­
ing field direction, which, lying by assumption in the 
YOZ plane, is always normal to OX, and the bilateral 
symmetry of the distribution about the YOZ plane, 
this product and thus the first sum in Si2 must evidently 
also vanish in the mean. It follows that Si2 = S21 = 
0. The scattering matrix is therefore diagonal, and 
one may write for the total scattered amplitudes 

(11) Reference 5, Section 8.5 (27). 
(12) If Ex = Ez; this is the usual case in the Kerr cell, in which the 

light is polarized at 45° to the applied field. 
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•ikir-y) 

u\z — Sn 
ikr 

-U0Z 

(12) 
,—ik(r-y) 

U\x — S% 
ikr -u0x 

so that the two waves are scattered as if independent 
with scalar scattering functions. Integration of these 
expressions over the volume contributing to the for­
ward scattering yields13 as the total amplitude u,„ 
primary and scattered14 

uv = w0„l 1 /c2 NlS1 (13) 

v = Z, X 

where N is the number of particles per unit volume, / 
the thickness of the layer, and Sz = Sn and Sx = Sn-

In order to find the refractive index corresponding to 
each wave, we formally replace the layer of suspension 
with a slab of homogeneous material and adjust its 
refractive index until it produces the same effect on the 
light at P as that produced by the suspension. We then 
accept this value of the refractive index as that of the 
suspension. The effect of the slab on u0„ is to retard 
it by the amount of time At = /[(1/c) - (IJv1)] = 
/(«„ — nt)[c, where n, and nt are the refractive indices 
of the slab and adjacent semi-infinite dielectric (sus­
pending medium), respectively. The difference (n„ 
— Hi) is assumed to be close to unity in the Rayleigh-
Gans approximation. The retarded wave becomes (k 
= Un11Ic) 

u„ = e~ «•«('»<-»<>/>" Uou = W o „ 1 
ikJ. 
n, 

(«„ - Hi) (14) 

In the general case, «„ is complex, its real part deter­
mining the phase lag of the light upon transmission 
and the imaginary part absorption effects. Since the 
suspension is assumed to be nonabsorbing, n, here is 
purely real. If the effects of the suspension and slab 
on the light at P are to be identical, then we may equate 
the amplitudes in the two cases and thus obtain 

ni 

ITVN 
(15) 

the subscript in «„ denoting the case under comparison. 
The desired expression for the birefringence T is ob­
tained as the difference ns — nx (= np — «s) 

r = ^ < Z < 4 E ( « 3 i 2 - CHJ1W + 
in i i j 

2j2YXava3k - aualk)cjiCki]) (16) 

II. Relaxation Times in Anisotropic Diffusion 

We shall now evaluate eq 16 for the general condi­
tions set forth in the problem as stated in the intro­
ductory section. The equation consists of sums of 
averages of products of an element of the polariz-
ability tensor of the typical particle: two elements 
(which may be the same or different) of matrix A and 
two elements of matrix C. As before, since A and C 

(13) There are typographical errors in the analogous expressions in 
Taylor and Cramer. 

(14) Reference 10, p 32. 

are independent, the mean of the product of an element 
of A with one of C is the product of the individual 
means. The elements of A, first, describing the orien­
tation of the particles at the instant the field is removed, 
e.g., at time zero, will not be evaluated as such. It 
will be found that they are not contained in the expres­
sions for the relaxation times and that they occur in the 
equation for the birefringence in such a fashion that it 
would be exceedingly difficult either to estimate them 
individually or to obtain information from them about 
the particles. With respect to the elements of C, 
expressions for the time-dependent averages of all 
pairwise products of direction cosines are given by 
Perrin2 in terms of the frictional constants of the par­
ticles. They are derived from the general diffusion 
equation (1) with the initial condition that, in the 
mean, the axes of the particles coincide at time zero with 
their respective Kerr-cell axes. This condition is not 
fulfilled by the initial distribution of particles, i.e., 
(ciij) 7^ ha, except in the trivial case of the infinite 
orienting field. Since it is fulfilled, as is the more 
rigorous condition ctj = hi}- itself, by the elements of 
matrix C initially, Perrin's results do give us the 
quantities (c^Cki). This is the reason for the intro­
duction of the separate matrices. The device, which is 
applied, for example, by Einstein,15 in his theory of 
translational Brownian motion, has the effect formally 
of assigning to all particles identical initial orientations 
in a single common axial system and identifying con­
centrations here with probability densities in random 
diffusion. It is valid if the subsequent motions of the 
individual particles are independent, i.e., if the matrices 
A and Care uncorrected. 

Perrin obtains, first, that the means of all double 
products in which any index value occurs only once 
vanish. This result eliminates all terms in the second 
sum in the brackets in eq 16. For the squared elements, 
Perrin finds (his eq 32 and 33) 

1 1 
(C^) = 3 + -(I + ede-m-' + 3(1 - 9,)e-

(C^) = \ - J(I - 2Qk)e-m-1 - l
6(l + 2ek)e~ 

where i,j, and k are all different, where 

(R = ,-2(R; 

(P2 = ^CE<3VR> 

(17) 

(18) 

e,- = 
( R i - ( R 

2\/(R2 - (P2 

and where 

6± = (R ± V(R2 (19) 

The quantities (R; are the rotational diffusion constants 
defined in eq 1 which are related to the particle prop­
erties as (R, = kTjCi (eq 2). The equations of the 
frictional constants Q for an ellipsoid of axial lengths 
2a, 2b, and 2c corresponding to the subscripts 1, 2, 

(15) A. Einstein, Ann. Phys,, 17, 549 (1905), Section 4. 
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and 3, respectively, are derived by Edwardes,4 to be1 

C1 = 

C2 = 

C3 = 

\6irr) A2
2 + A3

2 

3 

167TTJ 

3 

167T77 

A 2
2 P 2 

Al2 

A l 2 P l 

Al2 

+ 
+ 
+ 
+ 

O3
2P3 

« 3 2 

A3
2P3 

A2
2 

3 Ai2Pi + A2
2P2 

where t] is the viscosity of the suspending liquid, 
constants Pi, P2, and P3 are the definite integrals 

= Jo (a? 
dX 

X)A: 

(20) 

The 

(21) 

where K2 = (AX
2 + X)(A2

2 + X)(A3
2 + X). The integrals 

in (21) cannot be solved in closed form unless at least 
two of the axes are of equal length, i.e., in the case of the 
spheroid. 

For convenience of computation, eq 19 and 21 may 
be written in the following forms 

kT 
C,-5 Z-/ Z- i /~< y~> 

i>j W ^ j 
(19') 

Pa = sin2 a 
[F(/3) - EW)] 

P» = — 
sin- a cos- a 

E(j3) - cos2 a F(f3) -

sin2 a sin /3 cos , 

cos 7 
(21') 

P, = cos2 a 
sin p cos 7 

cos /3 ^(/3) 

where cos /3 = c/a, cos 7 = b/a, sin a = sin 7/sin (3, 
and p = (2 cos 7 cos fi)l(abc sin3 /3). F(/3) and £(/3) 
are Legendre's elliptic integrals of the first and second 
kinds, respectively, of modulus sin a and amplitude (3. 
Equation 19' is obtained from substitution of the defini­
tions (eq 18) and rearrangement, and eq 21 ' are the 
forms given by Osborn.17 Pa, P6, and Pc are identified 
as Pi, P2, and P3 by ordering the three axes 1, 2, and 3 
from largest to smallest and labeling them, in this order, 
as A, b, and c, respectively (so that, e.g., the axis of 
rotation A3 is a for the prolate ellipsoid and c for the 
oblate, and P3 is Pa and P 0 respectively). 

Introducing these results into eq 16, one obtains for 
the birefringence at any time following removal of the 
field 

JL 
In1 

EEa1-(A3/ - au*)(cji*) (22) 

In substituting for (c3i
2), we observe first that, since 

S A 3 / = So 1 / = 1 (as the sums of squares of the di­
rection cosines of a vector), the constant term 1Jz 
occurring in each of the averages is eliminated. We 
find finally 

- £ < - -ee+ f + A_e~ ') (23) 

(16) To within an arithmetic error in the final result which is cor­
rected by Perrin.1 The results must reduce to 8?nja3 for a sphere of 
radius a. 

(17) J. A. Osborn, Phys. Rev., 67, 351 (1945). 

where 

6A± = (A3I2 - An2) [Ia1(X =F Gi) - a2(l ± 2G3) -

a3(l ± 2G2)] + (A32
2 - A12

2) [ - a i ( l ± 2G3) + 

2a2(l T G2) - a3(l ± 2G1)] + 

(A33
2 - A13

2) [-(X1(I ± 2G2) -

a,(l ± 2G1) + 2a3(l =F G3)] (24) 

Equation 23 is the desired solution to the problem. 
It is seen, first, that the decrease in birefringence for 
asymmetric ellipsoids is in general a mixed exponential 
curve which requires for its characterization two relaxa­
tion times VeG+ and VeG- which may be estimated from 
it. The two values G+ and G_ suffice to detemine the 
quantities (>l and (P 

(R = ^(G+ + GJ) 

(P2 = G+G. 

(25) 

one of which, (R, is seen from its definition (eq 18) 
to be related to the harmonic mean of the frictional 
constants Q as kT/(R. Second, one may conclude that 
9+ and G_ do not contain sufficient information to per­
mit estimation of the three C,'s individually. It is 
necessary to combine rotational diffusion data with 
some other shape parameter, such as the volume or the 
radius of gyration, to obtain a unique determination of 
the axial lengths. Moreover, no generalization can be 
made about the relative values of Q + and G _ which would 
serve to distinguish a mixed curve of this origin from one 
which would also be observed with a mixed suspension 
of two different types of spheroids. Finally, one 
notes that in the case of random initial orientation, the 
mean values of all quantities a^2 are equal and the two 
coefficients A± vanish, as required. 

It should be noted that the relaxation times depend 
solely on the axial lengths of the particles and not on the 
polarizabilities or initial orientation of the suspension. 
Taylor and Cramer18 have recently brought into ques­
tion the validity of the value of the birefringence as 
obtained from calculations based on representation of 
the polymer molecule as a uniform dielectric particle 
of the same shape. The polarizability tensor, which 
as we have seen is the basis of the birefringence 
calculation, is derived in macroscopic theory directly 
from the relationship between the external (applied) 
electric field strength and the local field strength within 
the particle. Thus, a failure of the birefringence 
calculation would show that the local electric field 
within the molecule is markedly different from that 
within the model dielectric particle. It follows that 
since particles in an electric field seek to minimize, in 
the mean, the magnitude of the local electric field 
strength within the particles, and since the variance of 
the distribution is also a function of the value of the local 
electric field strength, these results have the same sig­
nificance to theories of orientation of molecules in 
electric fields as they do to optical theories. Since 
both the a,- and the a a are affected by these considera­
tions, it is felt that more must be known about the local 
field within polymer molecules before it would be use-

(18) E. W. Taylor and W. Cramer, Biophys. J., 3, 143 (1963). 
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ful to evaluate eq 24 for the meaning of the coef­
ficients A± of the exponential quantities in the decay 
curve. 

III. Dependence of Birefringence on Field Direction 

In the preceding section, the dependence of the bire­
fringence on the angle formed by the field direction 
with the direction of measurement, being contained in 
the coefficients A±, was not evaluated as such. We 
shall now specialize eq 16 to the case of the optically 
symmetric spheroid, with, in general, a permanent 
dipole moment of nonaxial orientation, and transform 
the resulting expressions to obtain explicit evaluation of 
this dependence. As in section II, the analysis is gen­
eral in not requiring any assumptions about orien­
tation mechanisms in describing the initial distribution 
of particles about the field direction. Moreover, the 
conclusions apply to a system during its response to the 
orienting field as well as following removal of the 
field. 

In writing the birefringence for any given instan­
taneous particle distribution, we formally apply to the 
suspension an orienting field which produces that dis­
tribution and prevent diffusion by equating the matrices 
C to the unit matrix, i.e., Q, = 5#. The orientation is 
thus contained in the distribution of elements of the 
time-independent matrices A. From eq 16, if ax = 
a-i F̂  «3, then the birefringence produced by the as­
sumed distribution is 

= «i ZXa3;2- O1,-
2) — ai(a33- — an') + 

i 

a3(a33
2 — an"-) 

= (a3 — an){a33
2 — an

2) (26) 

the difference of sums of direction cosines vanishing as 
before. 

We shall describe the orientation of a particle by 
means of its Eulerian angles referred to the axial sys­
tem OXYZ. Let & and 0 be the colatitude and azi-
muthal angles of axis a3, measured from OZ and the 
YOZ planes, respectively. The third Eulerian angle, 
\p, describing rotation about axis a3, is arbitrary, since 
its value cannot occur in the expression for the bire­
fringence of particles optically symmetrical about 
axis a3. The standard expressions for an and a33

19 

are an = sin $ sin </> and an = cos #. Substitution into 
eq 26 yields 

N 
T = x—(as — ai)(cos2 § — sin2 § sin2 0) 

Inx 

N C2T C 
= ^~{a3 - Oi1) I I (cos2 $ -

In i JoJo 

sin21? sin2 4>)p sin # dt?d0 (27) 

The integral definition of the mean has been introduced 
for evaluation below. Here, p{&,4>,t) sin § d#d0 is the 
instantaneous probability that the orientation of a 
particle be within an infinitesimal region about the 
particular values (#,0), p being the probability density 

(19) Cf. H. Goldstein, "Classical Mechanics," Addison-Wesley 
Publishing Co,, Reading, Mass., 1950, p 107 ff. 

function as before. The second form of eq 27 is eq 
37c in Peterlin and Stuart.6 

Equation 27 for the birefringence is independent of 
the form of p. We now wish to express p in as general 
a form as possible incorporating the dependence on 
field direction in an explicit form. Independent of 
whether the particles of a given small volume element 
of the suspension are at equilibrium with the field at a 
particular instant, or whether they have undergone dif­
fusion following removal of a field which has com­
pletely or partially aligned them, the angular distri­
bution within the volume element must be symmetrical 
about the field direction in that element, so long as 
the particles were randomly arranged before applica­
tion of the field. Let us define a fixed local coordinate 
system OX* Y*Z* for a given volume element with OZ* 
parallel to the applied field strength in the volume ele­
ment and OY* lying in the plane formed by the field 
strength and the direction along which the birefrin­
gence is to be measured (the YOZ plane). Let §* 
and 4>* be the colatitude and azimuthal angles of the 
symmetry axis of the particle relative to these coordi­
nates, measured, respectively, from OZ* and the Y*OZ* 
plane. Under very general conditions'20'21 the prob­
ability density function p may be expanded in terms of 
the complete orthogonal set formed by the surface zonal 
harmonics 

p(#V) = HMt)Pn[IJ.*) (28) 
n 

where p* = cos &*, and the coefficients An are defined 
by 

An = \(2n + 1) J Pn(n*)pdn* (29) 

The functions P„(M*) are the Legendre polynomials of 
the first kind. 

Since the meridional planes Y* OZ and YOZ coin­
cide, we may transform the Legendre polynomials 
from the one coordinate system to the other by means 
of biaxial harmonics.22 In general, if 6 is the angle be­
tween OZ and OZ*, and if the meridional planes coin­
cide, then 

Pu(^) = 
« (fi — inY 

S (2 - So,,,) ~ , ', P«m (cos d)Pn
m{y.) cos m<t> 

(30) 

where p. = cos & and the P„'"(IJ.) are the associated 
Legendre polynomials of the first kind. We note that 
the transformation introduces a 4> dependence into 
P,,(p*) and thus p as expected, since the distribution is 
not symmetrical about the new axis OZ. Substitution 
of eq 28 and 30 into eq 27 for the birefringence yields 

Y = r - ( a 8 - a O E E ^ » ( 2 - Kn))„ , m / » " ( c o 5 6) X 
Lnx n m \n -f- rn.}. 

/

1 /»2ir 

I [p.2 - (1 - M2) sin2 4>]Pn
m(p) cos m4> dcfxip 

(31) 
(20) J. G. Kirkwood, / . Polymer Sci., 12, 1 (1954). 
(21) I. Tinoco,/. Am. Chem. Soc, 77, 4486 (1955). 
(22) W. R. Smythe, "Static and Dynamic Electricity," McGraw-Hill 

Book Co., Inc., New York, N. Y., 1940, Section 5.24. 
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Applying the recursion formulas and other properties 
of the Legendre polynomials,21 especially 

M2 = "[P0(M) + 2P2(M)] 

(1 - M2) = ,[PM - A(M)] = 3A2(M) 

(32) 

one obtains for the integrals 

I /J-2Pn1XlJ.) cos m<f> d^dM = 

4w 
~^~l OomOon ~r ^02, re02« ] ( 3 3 ) 

J - i J o 
(1 - M2Xl - cos2 <j>)Pn'Xij) cos m4> d0dM = 

4ir 1. 
-1 l OQ1nUOn 5-"OmO2)J c"2m"2n 

Substitution into eq 31 yields 

T = ~ ( a 3 - ai)
2~Ai6P^cos 6) + /Y-(cos O)] (34) 

Applying the relations 

P2(COs 6) = ^(2 - 3 sin2 9) 

(35) 
/Vices d) = 3 sin2 9 

one obtains finally 

r = - f - ( a , - «!)(cos2 (TM2 (36) 

This is the desired expression for the birefringence as 
a function of field direction. It shows that the bire­
fringence characteristic of a particular field strength, 
as given, for example, by the Kerr law, is weighted by 
the square of the cosine of the angle through which the 
field is tilted. One notes that the probability density 
function for particle orientation is represented in eq 36 
solely by the coefficient A2 of the second term in its 
expansion in spherical harmonics. 

It is appropriate to discuss the necessity of correction 
for field end effects in Kerr-cell work and the applica­
tion of eq 36. The integrated intensity at the photo-
multiplier tube in a Kerr apparatus is given by 

/ = Sg(S) dxdz (37) 

the coordinates referring to the axial system OXYZ, 
where 5(x,z) is the retardation produced by the column 
of a given cross section dxdz, and g(5) is the intensity 
due to a beam of unit cross section propagated through 
a system producing uniform retardation 5. The 
integration extends over the total cross-sectional area 
occupied by the beam in the cell. If the applied field is 
of uniform strength throughout the sample volume, of 
length /, then 5 is a constant and the intensity is g(T,l)a, 
where a is the beam cross section and F the birefrin­
gence of the suspension. Because of end effects, the 
field strength does not in general have constant magni­
tude or direction, so that the retardation produced by 
any given volume element in the suspension is a func­

tion of its position. The full integration, or field cor­
rection, is evidently necessary whenever a significant 
fraction of the volume occupied by the beam is in the 
region of field nonuniformity. 

The nature of the correction required depends on the 
size of the Kerr cell. In large cells, in which the beam 
cross section is very small relative to the distance be­
tween the electrodes, the beam may be taken as approx­
imately confined to the midplane between the electrode 
faces. By symmetry, the field at the midplane is 
everywhere perpendicular to the plane, so that no cor­
rection for direction is required. A simple correction 
for the decreasing magnitude of the field strength in the 
midplane near and beyond the ends of the electrodes 
has been given by Chaumont23 which applies if the 
windows are sufficiently far removed from the ends of 
the electrodes so that they do not perturb the field. 
In smaller Kerr cells, such as those now standardly 
being employed in studies of proteins and nucleic acids, 
the light beam almost fills the electrode gap and the 
windows are placed close to the ends of the electrodes. 
This design is chosen both to maintain maximum light 
passing through the system and to restrict the required 
volume of sample. If the field is nonuniform in a 
significant portion of the sample volume near the 
windows, direct evaluation of the integral in eq 37 may 
be needed in careful work concerned with the absolute 
magnitude (as opposed to its relative time variation; 
see below) of the birefringence. 

IV. Relaxation Time of the Optically 
Symmetric Spheroid 

The important conclusion is obtained from eq 23 that 
the relaxation times in the decay of birefringence of a 
suspension of ellipsoids are independent of the field 
direction within the Kerr cell. If they are the desired 
quantities in a particular study, then it is not necessary 
to make a correction for field end effects. In studies 
requiring the absolute magnitude of the birefringence, 
an equation derived for the uniform field is corrected 
for field direction by multiplication with the square of 
the cosine of the angle through which the field is tilted 
from the perpendicular, as we have seen. Benoit's 
results for the optically symmetric spheroid may be 
corrected directly in this way. Because of the wide 
application of the Benoit derivation, it is of interest to 
consider its relation to the present analysis. 

The differential equation describing the motion of the 
particles following removal of the field is, from eq 4 

l_dp 
(Rid/ (1 - M*2) 

5M*2 2M* 
5M* 

(38) 

In Benoit's study, eq 38 is written in terms of the cell 
coordinates OXYZ, since the distribution is symmetric 
about OZ, whereas in the present case it is necessary to 
use the local coordinates OX*Y*Z*. The usual sepa­
ration of variables leads to a differential equation 
in the time with solutions of the form 

Bn'e - K ( H + I ) ( R l / (39) 

wheYe — n(n + 1) is the separation constant, n being 
any positive integer, and an equation M = M(M*) in the 

(23) M. L. Chaumont, Ann. Phys., [9] 5, 17 (1916). 
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spatial coordinates 

(1 ' } d M * . 
= -«(« + \)M (40) 

Equation 40 is Legendre's equation. Its solutions are 
the surface zonal harmonics 

M = ZCn'PniM*) (41) 

the Legendre polynomials of the second kind being 
omitted because the distribution is finite on the axis. 
Combining eq 39 and 41, we obtain for the general 
solution for (38) 

P = Y.Bne-"{n + mitP,U*) (42) 
n 

In Benoit's case, eq 42 can be introduced directly 
under the integral in eq 27. In the present case, com­
parison of eq 42 with eq 28 shows them to be identical 
if one writes 

An = B„e -?!("+ I)JW (43) 

The entire subsequent analysis of section III then fol­
lows, and we write on inspection, from eq 36 

2 TT JV, 
r = "5«T(a3 CKi) cos 2^ B2e -&?nt (44) 

This is the same result as that obtained by Benoit 
except for the factor cos2 6. 

Equation 44 may also be obtained directly from eq 23. 
One notes that, in one case, Benoit's derivation or 
that employed in the first part of the present section, 
one restricts the differential equation itself to the case 
of the spheroid and solves the particular boundary-
value problem; whereas in the other, by introduction of 
Perrin's expressions for the means of time-dependent 
quantities in diffusion, one obtains the solution for the 

birefringence from the general differential equation for 
anisotropic diffusion directly and then specializes it to 
the case of the spheroid. If C1 = C2 ^ C3, then it 
follows from the definitions 18 and 19 that Gi = G2 = 
1I-I, O3 = - 1 and that 0+ = (R1 and 0_ = (Qi1 + 2Ql3)P-
We note, first, that if on ^ a2 ^ a3, then the birefrin­
gence of the suspension decays in a mixed exponential 
fashion after removal of the field with the relaxation 
times Vê Ri and 72(6*1 -+- 2(R3). This is the case that 
the spheroidal particles consist of a material which it­
self possesses biaxial anisotropy with one of the 
electric axes coinciding with the particle axis a3, and we 
do not consider it further. In order to possess optical 
as well as geometric symmetry about axis a3 (the assump­
tion made in section III and elsewhere in the present 
section), the particle consists either of an isotropic 
material or a material of uniaxial anisotropy with its 
optic axis coincident with particle axis a3, and Ct1 

= a-i 9^ a%. In this case, the coefficients A± themselves 
simplify. First, A_ is found to vanish identically. 
This is an expected result. The decay in birefringence 
cannot contain a dependence on the frictional constant 
about the symmetry axis, since rotations about this axis 
are not manifested optically. The other coefficient A + 
becomes such that 

In 1 
<r = (QJ3 _ a i)[3(f l332 _ ant) _ £{a3<2 - au2)] 

= (a3 — ai)(a33
2 — an2) (45) 

Substituting these results for the coefficients into eq 23, 
one obtains eq 26 multiplied by the time-dependent 
exponential. Application of the analysis of section III 
to this equation yields eq 45 identically. 
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